High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response

نویسندگان

  • Xuelin Zhao
  • Hong Yu
  • Lingfeng Kong
  • Shikai Liu
  • Qi Li
چکیده

Increasing evidence suggests that microRNAs post-transcriptionally regulate gene expression and are involved in responses to biotic and abiotic stress. However, the role of miRNAs involved in osmotic plasticity remains largely unknown in marine bivalves. In the present study, we performed low salinity challenge with two Crassostrea species (C. gigas and C. hongkongensis), and conducted high-throughput sequencing of four small RNA libraries constructed from the gill tissues. A total of 202 and 87 miRNAs were identified from C. gigas and C. hongkongensis, respectively. Six miRNAs in C. gigas and two in C. hongkongensis were differentially expressed in response to osmotic stress. The expression profiles of these eight miRNAs were validated by qRT-PCR. Based on GO enrichment and KEGG pathway analysis, genes associated with microtubule-based process and cellular component movement were enriched in both species. In addition, five miRNA-mRNA interaction pairs that showed opposite expression patterns were identified in the C. hongkongensis, Differential expression analysis identified the miRNAs that play important regulatory roles in response to low salinity stress, providing insights into molecular mechanisms that are essential for salinity tolerance in marine bivalves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptomic Responses to Salinity Stress in the Pacific Oyster Crassostrea gigas

BACKGROUND Low salinity is one of the main factors limiting the distribution and survival of marine species. As a euryhaline species, the Pacific oyster Crassostrea gigas is considered to be tolerant to relative low salinity. The genes that regulate C. gigas responses to osmotic stress were monitored using the next-generation sequencing of whole transcriptome with samples taken from gills. By R...

متن کامل

High Throughput Sequencing of Small RNAs in the Two Cucurbita Germplasm with Different Sodium Accumulation Patterns Identifies Novel MicroRNAs Involved in Salt Stress Response

MicroRNAs (miRNAs), a class of small non-coding RNAs, recognize their mRNA targets based on perfect sequence complementarity. MiRNAs lead to broader changes in gene expression after plants are exposed to stress. High-throughput sequencing is an effective method to identify and profile small RNA populations in non-model plants under salt stresses, significantly improving our knowledge regarding ...

متن کامل

Transcriptomic analysis of Crassostrea sikamea × Crassostrea angulata hybrids in response to low salinity stress

Hybrid oysters often show heterosis in growth rate, weight, survival and adaptability to extremes of salinity. Oysters have also been used as model organisms to study the evolution of host-defense system. To gain comprehensive knowledge about various physiological processes in hybrid oysters under low salinity stress, we performed transcriptomic analysis of gill tissue of Crassostrea sikamea ♀ ...

متن کامل

Transcriptome of American Oysters, Crassostrea virginica, in Response to Bacterial Challenge: Insights into Potential Mechanisms of Disease Resistance

The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassost...

متن کامل

Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing.

Small non-coding RNAs, such as microRNAs (miRNAs), are involved in diverse processes, including organ development and tissue differentiation. Exosomes are small membrane vesicles (30-100 nm in diameter) produced by numerous cells. Recently, exosomes have been shown to contain miRNAs. However, the small RNAs contained in exosomes are not fully characterized. In a previous study, we found at leas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016